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Abstract. Proximal support vector machines (PSVM) is 2 new version of VM,
which involves equality instead of inequality constraints, and works with 2 square
error function. In this way, the solution follows from a linear Karush-Kuhn-Tucker
System instead of a quadratic programming problem. The linear PSVM can easily
solve the classification problems of extremely large datasets. However, according to
the experiments below, PSVM is sensitive to noise. To overcome the drawback, this
Nhote proposes a weighted version of PSVM. The distance between each peoint and
the center of corresponding class is used to calculate the weight value associated
with the related point. In this way, the effect of noise is reduced greatly. The
experiments indicate that the new SVM, weighted proximal support vector machine
(WPSVM), is much more robust to noise than PSVM without loss of
computationally attractive feature of PSVM.
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1 Introduction

Support vector machines {SVMs), which have been introduced as a powerful tool for
solving classification problems, classify points by assigning them to one of two disjoint
halfspaces. These halfspaces, separated by a hyperplane, are either in the original input
space of the problem for linear classifiers, or in a higher dimensional feature space for
nonlinear classifiers [2]. In the framework of standard SVMs, one assigns the hyperplane
to make the margin between two classes maximized in order to improve the generality of
SVMs. Since it has strong theoretical foundations and good generalization capability, the
standard SVMs have been gained wide acceptance,

A limitation of the SVMs design algorithms, particularly for large datasets, is the need
to solve a quadratic programming (QP) problem involving a dense mxm matrix, where
m is the number of points in the dataset. Since QP routines have high complexity, SVMs
design requires huge memory and computational time for large data applications.

In contrast to standard SVM, both [1] and [8] have constructed much simpler
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classifiers, namely PSVM and least squares support vector machine (LS-SVM)
respectively, which obtain the separating hyperplane by solving a system of linear
equations instead of a complex QP problem. Since it has stronger convex property of
obiect function of QP, PSVM classify points much faster than LS-SVM [1]. More in
detail, PSVM is based on replacing an inequality constraint by equality in the defining
structure of SVM framework, and also on replacing absolute error by squared error in
defining optimized problem. In this way, classifying given dataset including millions of
data by PSVM costs less than half a minute [1]. However, we think, it is the replacement
that makes PSVM sensitive to noise and outlier. (Figure 1 and 2).

The aim of the present paper is to show that one can improve PSVM’s robustness in its
original framework without the loss of the computationally attractive feature.

This note proposes weighted proximal support vector machine (WPSVM), which
modifies the original optimization problem of PSVM by applying a given weight value to
the error variable. We have shown that the technique of WPSVM is equivalent to the
weighted ridge regression, which is a well-known topic in statistics community. For
PSVM, the procedure can be a cheap and efficient way to make the solution robust.

The idea presented here is partially motivated by {4]. However fuzzy support vector
machine proposed in [4] is based on the framework of standard SVM, which need to
solve a more complex QP problem than SVM does. While the computationally
attractive feature of PSVM remains in WPSVM formulation.

We summarize the contents of the paper now. In Section 2, PSVM is presented briefly.
The WPSVM will be derived in Section 3 after some analysis to PSVM.  Finally, there
are some experiments and conclusions in Sections 4 and 5.

A word about the notation used in this note. All vectors will be column vectors unless
transposed to a row vector by a prime superscript *. All matrix and vectors are in bold.
The scalar (inner) product of two vectors x and y in the n-dimensional real space R”
will denoted by x'y and the 2-norm of x will be denote by || For a matrix AeR™”,

A, is the ith row of A which is a row vector inR”, while A, is the jth column of A. A

column vector of ones of arbitrary dimension will be denoted by e. For A<R™ and
BeR™  the kernel K(A,B) maps R™ xR"* into Rr™* . In this note, we will make use of
the following Gaussian kernel that is frequently used in SVM literature:

{K{A.B)); =¢ ufa,-8.

where p is a positive constant and ¢ is natural logarithm. The identity matrix of

arbitrary dimension will be denoted by 1. The vector y always refers to the error variable
if there is no special declaration.

i=lee,m, =Lk,

2 PSVM

This section will -briﬂfly introduce PSVM proposed by Glenn Fung and Olvi
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L.Mangasrian in {1].

First we present the mathematical model of standard SVM. Consider the problem of
classifying m points

(Xls yl)s"'x(xm! ym)

where x, e g» Is given a label y &{-1.13. The standard SVM classifier is constructed by
maximizing the separating planes margin, that is, the distance between the parallel planes.
This data classification problem can be regarded as the following QP problem with a
given parameter v

v

. : 1 2
i+ wweer®)
st D(Aw—er}+y=¢ p20 (1}

where mxn matrix A represents the points, and a given diagonal matrix D is specified
with plus ones and minus ones along its diagonal by the membership of each point A;in
the class A+ or A-. That is
Awzr+l for D, =1
Al L (2)
wsr-1 for D,=-1
PSVM modifies this formulation based on maximizes the separating margin, which is
the distance | /(”wnz +r?), and the formulation (1) is replaced by the following problem:
. v L,
mlgﬁ_‘_m—z—l[y" + E(W w o+ rh)

{w.ry)e
8.1 D(Aw —er)+y=e 3)
To solve the optimization problem (3) with equality constraint, we construct the
Lagrangian function: _
Liw,r,y,u} = %Mz + %(w’w +rt) - uD(Aw ~er) +y—e]  (4)

where weR™ is the Lagrangian multiplier associated with the equality constraint of (3).
Based on the Karush-Kuhn-Tucker (KKT) conditions, we set the gradients of L equal to
zero and obtain the following KKT optimality conditions:

w—A'Du =0
r+e'Du =0

_ (5}
vy -4 =0

D{Aw —er}+y—e=0
The first three optimality conditions of (5) give the following expressions for the
variables ( w,r,y ) in the optimization problem (3) in terms of the Lagrange multiplier u

w=A'Du, r=-e'Du, y:% (6}

Substituting these expressions in the last equality of (5) allows us to obtain an explicit
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expression for u in terms of A and D as follows:

u= (ml- +D{AA+ee' e
. ™)
:(—‘;—+HH')'EE
where H is defined as:
H=D[A —¢]. (8
Because the solution (7) for u includes an inversion of a possibly massive mxm
matrix, we make use of the Sherman-Morrison-Woodbury formula 110] for matrix

inversion. And (7) is replaced by the following expression which just computes the
inversion ofa (n+1)x{n+1) matrix

umv(l*l{(i+H'H)"H') {9
v

We know, in most cases, n<<mis valid. So the computational complexity of linear
PSVM is reduced greatly.
The decision function for linear case is
>0 then reA+
Xw—r{ <0 then  xeA-— (10
=0 then xeA-or xeA-
The following parts discuss the nonlinear case for PSVM. Replacing the primal

variables w of the equality constrained optimization problem (3) by its dual equivalent
w=A'Du from (6) to obtain:

: 1
i S )

SLDAADu-er)+y=e (1)

We replace the linear kernel AA' by the nonlinear Gaussian kernel K(A,A"), which

has been introduced in Section 1, and obtain the optimization problem for the nonlinear
PSVM:

. vy 1, 2
(u‘.r‘]:)]slﬁ”"‘”' 2 “y!‘ + ‘2"{“ utr }
S.LD(K(AA)Du~er)+r=¢ 2

For simplicity, -we represent the matrix K(A, A") by K. Similar to linear PSVM, the
Lagrangian multiplier z according to the equality constraint (12) is given as follows:
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2=+ DKK D) =2+ G6YT (13)
v v

where G is defined as:

G=DK -¢ (14)

According to (6), the separating hyperplane can be converted to as follows:
Xw-r=xA'Du—r=90 (15
We replace x'A'by the kernel expression g(x',A’). According to the KKT optimality
condition w=DK'Dv and r = -¢'Dv, we obtain the nonlinear classifier:
=0 then xeA+
(K{x', A)MK(A,A) +e)Dzy <0 then XxeA- (16)
=0 then Xx€A+or xeA-

The extensions of PSVM also can be found in [7], [11] and [12].

3 Weighted Proximal Support Vector Machines
3.1 Analysis of PSVM

Obviously, PSVM is much more computationally efficient than standard SVM. But
there are still some limitations in the theory. From the formulation discussed above, each
point belongs to either of the classes. And in each class, we can easily check that all
training samples are treated uniformly in the theory of PSVM. In real life, the effects of
training samples sometimes are different. For example, when some training samples are
polluted by noise, the clean training samples are more important than those polluted
points in the classification problem. The meaningful training points must be classified
correctly while the misclassification of the others like noise should be ignored. The
theory of PSVM is not suitable to the case, which results in bad performance of PSVM in
the case of noisy training set.

Base on the idea presented above, we think, the training point polluted by noise should
not be regarded as a full point belonging to one of two class. That is, it may stand 80%
possibility to belong to one class and 20% is meaningless. Namely, there should be a
weight value 0<s=1applied to the training point, which describe the attitude of the point
belonging to one of the two classes.

3.2 Reformulation to WPSVIV

Suppose we are given m linear separable points (y.x,) , each of the
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points x, = k" belongs to either of two classes and is given a label y, ¢ {—'i, 1 for i=1--m.
Let s be the attitude for the point x, toward one class and we weight the error variable
vector y by weight value matrix S, which is a diagonal matrix given by
S=diag{s, . 5,}-
This leads to the optimization problem:
. % PN G 2
min = —lISyY" +— +
Loer, p)eR™™ D ” y” 2 (W wEr )
51 D(Aw—er)+y=e (a7

The Lagrangian becomes

Liw,r.y,u} =%“Syu2 + %(w‘w +r7) S w{D(AW - er) + y — €]

Here, nweR” is the Lagrange multiplier associated with the equality constraint of (17).
Setting the gradients of L equal to zero gives the following KKT optimality conditions:

oL = w-A'Du = 0
ow
% = r+eDu = 0
ar
oL . vSly-u = 0
oy
iE"—!['—zD(Avvmer}iryﬂ::O
Zu

From the system of linear equations, we can get explicit formulation of u, w and y

u=[HH+S? /v]e (18
$~2u
r=—¢'Du, w=A'Du and y= (I
v
The decision function for linear case is
>0 thesn XeA+
Xw-ri <{ then  xeA- 20

=0 then xeA—-orxe A -

By letting H=D[A -e¢],we implement the Sherman -Morrison-Woodbury formula to (18)
and obtain:

u = {v8% ~ [vSZTH{I + H'S*H) "TH'vS§ Je 2

This expression includes an inversion of (n+1)x(n+1} matrix, which should be much
simpler than the inversion of mxm matrix in (17) in the case of n<cm.
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© 3.3 Generating Weight values

©i The weight values can be generated in a simple way as below. Since each class of data
- shouid satisfy an unknown statistical distribution, there should be an center in each class.
" According to Chebyshev inequality [11], the training point close to the center is supposed
" tp stand more chance to be an unpolluted point and make greater effect on the separating
: hyperplane formulation. The training samples far away from the center should have less
~7 effect. Following this idea, for a given point x, we let weight vatue as below:
= s=1-d/iR+q) (22)
Here s represents weight value associated with x, d is the Euclidian distance between
-7 the center and the training point x while R is the radius of the class, and ¢ is a given tune
©-. positive real number which prevents s from being zero.

"' 3.4 Algorithms for Linear WPSVM

Given m data points in R”represented by the mxnmatrix A and a diagonal matrix D

of *1labels denoting the class of each row of A, we generate the linear classifier (20) as
follows:

1. Inthe class 1 and —1 of training dataset, we implement the following procedure
respectively: let the center equal to the mean vector of the m data points, and
then compute every Fuclidian distance d between center and every training
sample. The radius R is defined as the biggest d.

2. According to (22), we obtain every weight value applied to each sample for a
given positive q, that is, the weight value matrix S is defined,

3. According to (8), H is defined where € is an mx1vector of ones and compute u
by (21) for some positive v. Typically v is chosen by means of a tuning (validating)
sel.

4. Determine (w, r) from (19).

3. Classify a new x by using (20).

3.5 Analysis of WPSVM
In this subsection, we prove that the optimal problem of linear WPSVM is identical to

a weighted ridge regression, which is known in the statistical community.
In fact, the optimization problem (17) can be converted as follows:
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min vy'SSy/2+(ww'+r2)/2 D{AwW —er)+y=¢

(w, e e

< min vi(e —~ D{Aw) ~er)SS(e - D{AW) — er)] + {w'w + %)

{w.rlen™

< min vie—SD[A, —e][w',r]]> +(w'w+r?)
(w.ryer"™!

1

< min_ [S[A,~e){w,r]-De[ +=|[w,r][

(w.rel! v
which is weighted ridge regression actually.
In this ridge regression model, an additional dimension is added for input vector x with

corresponding weight such that xi = s,[xl’ j and the bias term is incorporated in the weight

vector w =(w]. The problem is converted to fit the points (;,y;) by y= \Tv'x, where y,
F

is the corresponding label.

We believe the equivalence of ridge regression and WPSVM with linear kernels enable
us to take advantage of the rich statistics literature to estimate the tuning parameter more
effectively, an issue that was ignored in earlier work.

3.6 Nonlinear Case

In most cases, the searching of suitable hyperplane in an input space is too restrictive
to be of practical use. A solution of this situation is mapping the input space into a higher
dimension feature space and searching the optimal hyperplane in this feature space. Here
we introduce a nonlinear function ¢, by which the dataset is mapped to a higher
dimensional space where the samples is linear separable. According to (19), the equality
constraint (17) can be replaced by

DAA'Du—er)+y=e¢.
After mapping the input space to a feature space by , the constraint is converted to
D (Ap{AYDu—er}+y=e.
Sometime it is difficult to obtain the explicit expression of ¢ . We just only need to know
a function K called kernel that can compute the dot product of data points in the feature
space, that is
P(AJ (A )= K{A A .
The optimization problem for WPSVM in the nonlinear case is represented as follows:

min_ |y|’ +J£(u‘u +rh) St D(K{A, A )Dn —er)+y=¢ (23)

(o r ekl
For simplicity, we represent the matrix K(A, A") with K. The corresponding
Lagrangain can be written as:

L(w,r,y,z);%”Sy“2 +m:1£(u'u +r) - Z[D(KDu —er) +y —e]
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where zek” is the Lagrange multiplier associated with the equality constraint of (23).
- The KKT condition comes to

A Kbz - 0
Su
o = r+eDz = O
or
L _ Sy-z = 0 24)
ay
BL“D(KDu-erHy e=0
z
and we get
: ‘ . S22
r=—¢'Dz, u=DK'Dz and y=—r (25)
v

Substituting these expressions in the last equality of (24) gives an explicit expression
forz
. 2=[(8")Y v+ GG']'Se (26)
'w_here
G=D[K-¢]. amn
-+ The nonlinear separating hyperplane corresponding to the kernel X can be deduced by
the linear separating rute (20) and w=A'Du from (19) as follows:
. xXw-r=xADu—r=0
Replace x'A" by the kernel expression £(x',A" , and substxtute from (23) foruand r,

we obtain the separating surface:

K(x AYDu ~r = K(x'AYDDK(A,A')Dz +¢'Dz (28)
o = (K(X',ANK(A, A V+e)Dz = 0
" Below we give the nonlinear classifier as beflows:
& >0 then xeA+
K(X',AYK(A, AN +e)Dzs <0G then XeA -~ 29

=0 then xeA+or xe A
: Unlike the situation with linear kernels, the Sherman-
- Morrison-Woodbury formula is useless here because the kernel matrix K is a square
- mx m matrix, so the inversion in (25) cannot be converted to an inversion of »x» matrix
= as.the linear case.
- The reduced kernel techniques of [10] can be used here to reduce the mxm matrix
_'-K K(A AYto a much smaller mxm dimensionality of a rectangular kernel K= K(A, AY

" where mis as small as 1% of m. In this way, the computational complexity of nonhnear
17 WPSVM is reduced greatly.

" We now give an explicit statement of our nonlinear classifier algorithm.

Given m data points in R"represented by the mxnmatrix A and a diagonal matrix D
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of -1 labels denoting the class of each row of A, we generate the linear classifier (29) as
follows:

Step 1 and 2 is the same as Step 1 and 2 of Algorithm in linear case mentioned above.

3 Choose a kernel function K(A,A"Y, Wypically the Gaussian kernel.

4 According to (27), G is defined where e is an mx1vecior of ones and compute z by
(26) for some positive v. Typically v is chosen by means of a tuning {validating) set.

5 The nonlinear surface (28) with the computed v constitutes the nonlinear classifier
{29} for classifying a new point X.

4  Experiments
4.1 Simulation results

This experiment is conducted in the Matlab environment. We generate two classes of
points in R?randomly. The Figures below show the performance of linear PSVM and
WPSVM in an unpolluted setting (without noise) and noisy setting respectively. The
circles and crosses represent the training samples in different classes. The dotted line
shows classification rule obtained by PSVM while the solid line is obtain by WPSVM.
Figure 1 indicates that PSVM can classify data into two classes well before adding noise
data. After adding noise, PSVM cannot work any more while WPSVM classifier still do
well in the classification problem (Figure 2), which indicate that WPSVM is more robust
than PSVM. Points in (20, -20), (-18, -10), (-19, -20) are the noise we add in the original
data. :

4.2 Real data result

Heart dataset is obtained from UCI Machine Learning Repository, from which we
randomly select 270 samples with 13 attributes. Using different scale of training set, we
compare performance of WPSVM with that of PSVM. The experiments indicate that
WPSVM is much more robust than PSVM (Table 1). Although a little more time
consuming happens in generating the diagonal matrix $ in executing WPSVM, we
believe it still workable in some real life applications for WPSVM’s higher accuracy.
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Fig. 2. Performance of PSVM and WPSVM after noise adding
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Table 1. Test accuracy comparison between WPSVM and PSYM

5

The size WPSVM PSVM
of Number of misclassification Test Number of misclassification
training accuracy Test Accuracy
dataset and Before adding | After noise data | Before adding After noise data
nolse dataset noise data added noise data added
40(3) 47 59 56 69
79.6% 74.3% 15.7% 70.0%
80(10) 32 41 34 57
83.2% 78.4% 82.6% 70.0%
160G{20) 14 27 14 34
87.3% 1 75.6% 87.3% 69.1%
Conclusion

In this note, we propose a new version of SVM, that is, WPSVM which improve the

robustness of PSVM without loss the computationally attractive feature of PSVM. The
future work will try to solve robust and sparse regression problem in the framework of
PSVM.
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